Быстрый ремонт импульсных блоков питания своими руками. Импульсные блоки питания – устройство и ремонт Ремонт импульсных источников питания

В зависимости от причин и видов возникших поломок, могут потребоваться различные виды инструментов, обязательно необходимо иметь:

  • набор отверток с различными типами рабочих наконечников и размерами;
  • изоляционная лента;
  • пассатижи;
  • нож с острым лезвием;
  • паяльный аппарат, припой и флюс;
  • оплетка, предназначенная для удаления ненужного припоя;
  • тестер или ;
  • пинцет;
  • кусачки;

В наиболее сложных случаях, когда не удается установить точную причину неполадок, может понадобиться осциллограф.

Ремонт основных неисправностей


После осуществления диагностики, и выявления причин некорректной работы
, можно приступать к его ремонту:

  1. Скопившуюся внутри блока питания пыль можно просто устранить при помощи обычного бытового пылесоса.
  2. Если причина была в неисправном предохранителе , то необходимо приобрести новую деталь, которая имеется во всех соответствующих в магазинах. После этого, осуществляется удаление старого элемента и пайка нового предохранителя. Если эта последовательность действий не помогла, и блок питания так и не заработал, то остается отдать его в мастерскую для диагностики при помощи профессиональных видов оборудования, либо просто приобрести новое устройство.
  3. Если проблема была в конденсаторах или , то неисправность исправляется по такому же алгоритму: приобретаются новые детали и впаиваются в схему вместо старых элементов.
  4. Если проблема неисправности заключалась в дросселе , то его заменять необязательно, поскольку этот элемент можно починить по довольно легкой методике. Дроссель извлекается из блока питания, после чего его потребуется разобрать и начать сматывать обгоревший провод, при этом, важно внимательно считать сматываемые витки. Затем необходимо подобрать аналогичный провод с равным диаметром и намотать его вместо испорченного проводника, осуществляя такое же количество витков, которое было смотано. После осуществления этих действий, дроссель устанавливается обратно на свое место и, если все было сделано правильно, устройство должно функционировать.
  5. Термисторы ремонту не подлежат , их просто меняют на новые элементы, чаще всего это осуществляется вместе с предохранителями.
  6. Для профилактики , во время ремонта можно извлечь из устройства кулер и смазать машинным маслом, после чего установить его на место.
  7. Если на поверхности платы были обнаружены трещины, которые повредили соединение контактов, то их необходимо закрыть при помощи пайки. Таким же образом исправляется любое нарушение контактов в резисторе, индукторе или .

Устройство


структурная схема ИБП

Блоки питания подобного типа являются по своей сути разновидностью стабилизаторов напряжения, устройство которых выглядит следующим образом:

  1. Сетевой выпрямитель является одним из основных элементов, который необходим для сглаживания возникающих пульсаций. Также, он требуется для поддержания заряда фильтрующих конденсаторов во включенном режиме и непрекращающейся передаче электроэнергии в нагрузку, если напряжение в главной питающей сети упало ниже допустимых для работы параметров. В его конструкцию входят особые разновидности фильтров, позволяющие подавлять большинство возникающих помех.
  2. Преобразователь напряжения , основными составными частями которого являются конвертор и контроллер управляющего устройства.
  3. Конвертор также имеет сложную структуру, в которую входит трансформатор импульсного типа, инвертор, ряд выпрямителей и стабилизаторов, которые обеспечивают вторичную подпитку и снабжение нагрузки напряжением. Инвертор необходим для изменения формы постоянного выходного напряжения, которое после процесса преобразования становится переменным напряжением с прямоугольной формой. Наличие трансформатора, функционирующего на высоких частотах со значением выше 20 кГц, обусловлено необходимостью поддержания рабочего состояния инвертора в автогенераторном режиме, а также получения напряжения, которое используется для подпитки контроллера, нагрузочных цепей и ряда защитных схем.
  4. Контроллер выполняет функции по управлению транзисторным ключом, который входит в состав инвертора. Помимо этого, он стабилизирует параметры напряжения, подаваемого на нагрузку, и защищает устройство в целом от возможных перегрузок и нежелательных перегревов. Если в блоке питания имеется дополнительная функция, обеспечивающая дистанционное управление устройством, то за ее реализацию также отвечает контроллер.
  5. Контроллер блоков питания подобного типа состоит из целого ряда функциональных узлов, таких как источник, обеспечивающий его бесперебойным питанием; защитная система; модулятор длительности импульсов; логическая схема для обработки сигналов и формирователь особого вида напряжения, предназначенного для поступления на транзисторы, располагающие в конверторе.
  6. В большинстве современных моделей, присутствуют оптроны, используемые в качестве развязки. Они постепенно заменяют собой трансформаторные разновидности развязки, это происходит благодаря тому, что они занимают меньше свободного пространства и обладают возможностью передачи сигналов в гораздо более широком частотном спектре, но при этом требуют значительного количества промежуточных усилителей.

Основные неисправности и их диагностика


Иногда импульсные блоки питания ломаются и их неисправности могут носить самый разный характер, но существует ряд схожих случаев, на основе которых был составлен список наиболее часто встречающихся видов неисправностей:

  1. Нежелательное попадание внутрь устройства пыли, особенно строительной.
  2. Выход из строя предохранителя , чаще всего эта проблема вызывается другой неисправностью – выгоранием диодного моста.
  3. Отсутствие выходного напряжения при работоспособном и исправном предохранителе. Данная проблема может быть вызвана различными причинами, наиболее часто ими является поломка выпрямительного диода, либо перегорание фильтрационного дросселя в низковольтной области схемы.
  4. Выход из строя конденсаторов , чаще всего это случается по следующим причинам: потеря емкости, приводящая к плохому качеству фильтрации напряжения на выходе и повышению уровня рабочих шумов; чрезмерное увеличение параметров последовательного сопротивления; короткое замыкание внутри устройства или разрыв внутренних выводов.
  5. Нарушение соединений контактов , которое чаще всего вызывается трещинами в плате.

Если блок питания по каким-либо причинам вышел из строя, то перед самостоятельным проведением любых работ по устранению неполадок необходимо провести тщательную диагностику, чтобы выявить их причины.

В зависимости от разных ситуаций, эта процедура имеет свои особенности:

  1. Осмотреть блок питания в целом на наличие скопившейся в нем пыли, которая может быть причиной его некорректной работы.
  2. Проверить главную плату на наличие на ее поверхности трещин.
  3. Проведение визуального осмотра основной платы блока питания позволяет определить состояние предохранителей. Заметить поломку будет достаточно просто, этот элемент устройства вздуется или полностью разрушится в случае пробоя. Также рекомендуется сразу провести комплексную проверку силового моста, конденсатора фильтра и всех силовых ключей.
  4. Если предохранитель находится в исправном состоянии , то необходимо проверить дроссель и электролитные конденсаторы, неисправности также элементарно выявляются визуальным методом по возникшим деформациям либо вздутиям. Сложнее осуществляется диагностика диодного моста или отдельных диодов, их потребуется выпаять из схемы и отдельно проверить при помощи тестера или мультиметра.
  5. Проверка конденсатором также осуществляется визуальным методом, поскольку возникшие перегревы могли расплавить электролит и разрушить их корпусы, или при помощи специального прибора, предназначенного для измерения уровня их емкости, если внешних неисправностей выявлено не было.
  6. Провести осмотр термистора , который подвержен частым поломкам из-за скачков напряжения или перегревов. Если его поверхность стала черной, а сам он разрушается от легких прикосновений, значит, причина неполадок именно в нем.
  7. Проверить контакты всех оставшихся элементов (резистора, трансформатора, индуктора) на возможные нарушения соединения.


Дополнительно при осуществлении диагностики или ремонта импульсных блоков питания рекомендуется следовать следующим советам:

  1. Осуществление самостоятельного ремонта подобных устройств является довольно сложным процессом, который требует определенных навыков и знаний, даже если в наличии имеются подробные инструкции. Поэтому, если отсутствует уверенность в своих силах, лучше обратиться к квалифицированному мастеру, чтобы не нанести блоку питания еще более серьезные поломки.
  2. Перед началом осуществления любых действий с импульсным блоком питания , его необходимо отключить от электросети. При этом, нажатие соответствующей клавиши на самом устройстве не гарантирует полной безопасности во время ремонта, поэтому необходимо осуществить отключение силового шнура.
  3. После того, как блок питания был полностью обесточен, необходимо выждать около 10-15 минут перед началом каких-либо работ. Это время требуется для полной разрядки конденсаторов на плате.
  4. Если требуется проведение паяльных работ , то их необходимо осуществлять крайне осторожно, поскольку перегрев места пайки может вызвать отслоение дорожек, а также существует риск их замыкания припоем. Лучше всего, для этих целей подходят паяльные аппараты с параметром мощности, находящимся в диапазоне 40-50Вт.
  5. Сбор блока питания после окончания ремонта, допускается производить только после внимательного осмотра мест пайки, в частности, требуется проверка замыкание припоем между дорожками.
  6. Рекомендуется обеспечить импульсному блоку питания качественную вентиляцию и охлаждение, которые защитят его загрязнений и перегревов, что минимизирует возможные поломки. Также, не допускается перекрытие вентиляционных отверстий на устройстве.

Ремонт импульсного источника питания. Отремонтировать блок питания или преобразователь напряжения самостоятельно может любой человек, владеющий базовыми радиоэлектронными навыками. Действуйте, выявите неисправность и устраните ее. (10+)

Ремонтируем импульсный источник питания сами, своими руками. Неисправности

Внимание! Некоторые элементы источника питания во время работы находятся под сетевым напряжением. Убедитесь, что Вы обладаете необходимой квалификацией для безопасного выполнения ремонта импульсного источника питания.

Диагностика и ремонт импульсного источника питания в большинстве случаев могут быть выполнены при наличии базовых навыков в радиоэлектронике.

Устройство источника питания, понижающего преобразователя сетевого напряжения

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида...
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при...

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука...
Включение светодиодов в светодиодном фонаре....

Инвертор, преобразователь, чистая синусоида, синус...
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за...

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить...
Приемы намотки импульсного дросселя / трансформатора....


Расчет онлайн гасящего конденсатора бестрансформаторного источника питания...

Инвертирующий импульсный преобразователь напряжения. Силовой ключ - би...
Как сконструировать инвертирующий импульсный источник питания. Как выбрать мощны...


Печать

Ремонт блока питания

Среди всех неисправностей ремонт блоков питания занимает первое место. В статье “Неисправности блока питания телевизора ” я описывал типовые неисправности блоков питания. В этой статье я хочу описать работу и ремонт блоков питания поподробнее.

Начать нужно наверное с того как проверить после ремонта блок питания , чтобы не вызвать повторной его поломки. Хотя этот метод считают спорным, я нахожу его весьма действенным.

Итак после ремонта блока питания нужно в разрыв предохранителя впаять лампочку мощностью ватт в 150 (можно и в 100, но может быть ложное свечение), а в разрыв цепи В+ (питание строчной развертки 95-145 вольт, дорожку можно просто разрезать) впаять лампочку 40-60 ватт. Учтите что некоторые блоки питания не запускаются с маленькой нагрузкой.

Работает эта система так. При включении в сеть после ремонта блока питания , при его исправности первая лампочка в момент заряда сетевого конденсатора (100-220мкф 450В) загорается и по мере заряда тухнет. Остается слабый накал. Лампочка в 60 вт светится соответственно напряжению в пол накала.

При неисправном блоке питания лампочка в 150 вт светится полным накалом. В некоторых случаях это спасает от повторного выхода из строя ключевых элементов транзистор, микросхема.

Во втором методе силовой транзистор блока питания не впаивается и с помощью приборов (осциллографа, мультиметра) анализируется уровень и форма сигнала приходящего на него.

Ремонт блока питания.

В описании я буду опираться на приведенную ниже схему.

При включении питания сгорает сетевой предохранитель.

Неисправности могут быть вызваны:

  • системой размагничивания;
  • сетевым фильтром и выпрямителем;
  • неисправностью ключа.

Проверяем на предмет короткого замыкания элементы сетевого фильтра, выпрямителя, терморезистор – системы размагничивания, ключ и элементы его обвязки, а также ключевой микросхемы (если блок питания построен на ней).
При нахождении неисправного элемента проанализируйте причины выхода его из строя. Выход из строя транзистора может быть вызван, как скачком напряжения в сети, так и высыханием конденсаторов в первичных цепях.

Блок питания не включается, сетевой предохранитель цел.
Следует проверить на предмет обрыва: сетевой фильтр, выпрямитель, ШИМ — модулятор.
Начните с проверки, есть ли на сетевом конденсаторе С постоянное напряжение около 300В (если нет, следует искать разрыв в сетевом фильтре, а также проверьте резистор R.
В случае наличия +300В на конденсаторе С, проверьте доходит ли оно до ключевого транзистора. Также следует проверить первичную обмотку сетевого импульсного трансформатора ТР на предмет обрыва.
Если все элементы исправны, а блок питания не включается необходимо проверить поступление импульсов на базу (затвор) транзистора.
Также проверьте цепочку R запуска, обычно это резисторы с большим сопротивлением.

Срабатывает защита блока питания .

Произведите проверку: элементов вторичных выпрямителей блока питания, нагрузок блока питания на предмет короткого замыкания, элементов системы защиты (цепей слежения за выходными напряжениями), цепей обратной связи (модулятор).
С вторичными цепями и их нагрузками я думаю все понятно, необходимо проверить выпрямители (диоды) и фильтрующие конденсаторы.
В цепях защиты проверьте оптрон и его обвязку.

Что касаемо цепей обратной связи, проверьте стабилитроны, диоды, конденсаторы (обычно 4,7-10- 47 мкф).

Напряжения завышены или занижены.

Произвести проверку:

Сетевого конденсатора, конденсаторов обвязки ШИМ, исправность оптрона и его обвязки.

Неисправности появляющиеся периодически.

В этом случае следует поступить следующим образом:

  • проверить пайку элементов блока питания на предмет кольцевых трещин;
  • проверить элементы в местах наибольшего нагрева на плате определив их по почернению.
  • В случае, если неисправность проявляется при прогреве телевизора, локализовать неисправный элемент можно или методом охлаждения (вата смоченная ацетоном, спиртом), или чтобы ускорить появление неисправности спровоцировать ее, нагревая тот или иной элемент паяльником.

Все современные электрические приборы, использующие цифровые технологии, питаются от встроенных блоков, работающих в импульсном режиме.

Они снабжаются защитами, имеют качественный монтаж, но из-за скачков напряжения в сети или ошибок человека все же выходят из строя: тогда дорогой бытовой помощник перестает работать.

Чтобы вы могли с минимальными потерями выйти из этой ситуации, я подробно объясняю все про импульсные блоки питания, ремонт своими руками их неисправностей.

Вначале предлагаю немного отойти от темы, чтобы вспомнить подсобный справочный материал. Если он вам не нужен, то сразу переходите к вопросам ремонта.

Импульсные блоки питания - как работают: краткий обзор схем

Структурная схема импульсного блока питания поясняется мнемоническими символами формы напряжения над каждым его составным блоком, а связи взаимодействия обозначены стрелками.

Принципиальную схему удобно представлять таким видом.

Монтажная плата одного из устройств с расположением деталей показана на фотографии ниже с моими комментариями.

Естественно, что это только частный случай, который, скорее всего не совпадет с вашим ИБП. Здесь я преследую простую цель - напомнить принципы взаимодействия составных частей блока.

Если вам необходимо более подробно ознакомиться с этими вопросами, то читайте специально написанную статью.

Правила безопасности с электрическим током: как исключить риски и защититься от удара током при ремонте ИБП

На всех существующих схемах импульсных блоков питания рядом с первичными цепями 220 вольт расположены вторичные - выходного напряжения. Их все необходимо измерить и оценить.

Правила безопасности с электрическим током требуют не допускать необученных людей к работам под напряжением. Поэтому обязательно ознакомьтесь с ними заранее.

Я же заострю ваше внимание только на трех вопросах:

  1. Работайте под напряжением только одной рукой: вторую засуньте в карман и не доставайте - сразу снизите риск попадания под действие электрического тока.
  2. Накопительные конденсаторы длительно хранят запасенную энергию даже при отключенном напряжении, требуют осторожного обращения.
  3. Подключайте импульсный блок питания для проверок только через разделительный трансформатор.

Электрическое сопротивление человеческого тела очень низкое: наш организм состоит из жидкостей. Если работать под напряжением двумя руками, то существует большая вероятность создать путь для прохождения тока короткого замыкания через свое тело.

А ведь несколько десятков миллиампер уже могут вызвать фибрилляцию сердца.

Мгновенный разряд конденсатора тоже способен причинить большой вред организму. Не советую испытывать судьбу: проверять на себе работу электрошокера.

Накопленный емкостной заряд следует предварительно снимать. Причем делать это не простой закороткой его выводов пинцетом или перемычкой, а резистивным сопротивлением в десятки килоом. Иначе могут возникнуть большие токи, которые элементарно повредят исправный конденсатор.

Разделительный трансформатор отделяет подключенный к нему потребитель от цепей питающей подстанции. Его применение исключает стекание тока через тело человека по контуру земли.

Величина тока короткого замыкания во вторичной цепи 220 разделительного трансформатора ограничивается мощностью, которую может передавать его магнитопровод.

Эта схема подключения допускает касание одной рукой (не двумя) любого места вторичной обмотки трансформатора или подключенного к ней источника бесперебойного питания.

Подключать ИБП к вторичной цепи разделительного трансформатора рекомендую через лампу накаливания.

Ее же с мощностью 60-100 ватт допустимо использовать в качестве токоограничивающей нагрузки при ремонте блока без разделительного трансформатора. Она уменьшит аварийный ток, может спасти транзистор от выгорания.

Как отремонтировать импульсный блок питания своими руками: важные советы для начинающих

Профессиональный электрик всегда начинает работу с подготовки рабочего места, инструмента и оценки рисков, которые необходимо предотвратить.

Следует хорошо представлять, что ремонтировать импульсный блок питания своими руками - значит работать под напряжением в действующих цепях.

Подготовительные работы: где найти схему импульсного блока питания и какие нужны измерительные приборы

Сейчас производители электротехнического оборудования хранят в тайне свои профессиональные секреты: схемы ИБП в свободном доступе нет. Мы же собрались делать ремонт своими руками, а не в специализированном сервисе.

Поступаем следующим образом:

  1. Вскрываем корпус и осматриваем электронную плату.
  2. Находим мощный транзистор (выходной ключ) и микросхему (ШИМ-контроллер). Иногда они могут быть объединены общим корпусом.
  3. Записываем маркировку и по ней ищем в справочниках или через интернет полное описание (data sheet).
  4. Изучаем по найденной документации выводы микросхемы, способы ее подключения и сравниваем полученные сведения с реальной конструкцией.

На малогабаритных микросхемах полная маркировка не всегда помещается. Тогда производители делают кодовое обозначение из нескольких букв и цифр. По нему сложнее искать информацию, придется упорнее потрудиться.

Технологию поверхностного монтажа печатных плат и способы маркировки деталей хорошо объясняет в своем видеоролике Влад ЩЧ. Рекомендую посмотреть.

Без измерительного электрического инструмента отремонтировать ИБП вряд ли получится. Можно обойтись старыми стрелочными приборами - тестерами, как мой Ц4324.

Они позволяют измерять большинство электрических параметров с достаточным для ремонта классом точности, но требуют повышенного внимания и выполнения дополнительных вычислений.

Сейчас намного удобнее использовать для замеров цифровой мультиметр.

Все правила обращения с ним для новичков я очень . Надеюсь, что она будет вам полезна.

Большую помощь в поиске неисправностей окажет осциллограф. Он позволяет просмотреть осциллограммы напряжений практически каждого узла ИБП.

По их виду и величинам довольно просто оценивать работоспособность каждого электронного элемента в составе схемы. Для снятия замеров подойдет любая модель: старая аналоговая или современная цифровая.

Но, если осциллографа нет, то отчаиваться не стоит. В подавляющем большинстве случаев можно обойтись цифровым мультиметром или стрелочным тестером.

Алгоритм ремонта импульсного блока питания: полная инструкция из 7 последовательных шагов

Неисправности внутри ИБП можно разделить на две категории:

  1. Явное выгорание с обугливанием деталей, дорожек, взрывы конденсаторов.
  2. Тихая потеря работоспособности без проявления внешних повреждений.

Алгоритм ремонта импульсного блока питания состоит из двух последовательных этапов: вначале проводят первичные проверки без подачи напряжения, а затем - замеряют величины электрических характеристик.

Первый этап ремонта предусматривает обязательное выполнение шагов №1 и 2 только с отключенным питанием .

Шаг №1: внешний и внутренний осмотр

Первоначально вам придется вскрыть корпус и внимательно осмотреть его содержимое. Все, что вызывает сомнения, необходимо тщательно проверить.

Первый тип повреждения таит в себе ту опасность, что определить маркировку сгоревших деталей бывает сложно, а то и невозможно. На этом этапе ремонт может остановиться.

Шаг №2: проверка входного напряжения

Во втором случае поиск места дефекта начинают с проверки наличия цепей питания 220 вольт. Часто возникает повреждение сетевого шнура или перегорание предохранителя.

Плавкая вставка предохранителя обычно перегорает от пробоя полупроводникового перехода диодов выпрямительного моста, транзисторных ключей или дефектов блока, управляющего дежурным режимом.

Все это надо проверить мультиметром: его переводят в режим омметра и замеряют состояние электрического сопротивления указанных цепочек, ищут обрыв, который необходимо устранить.

Сразу скажу, что не стоит успокаиваться, если обнаружили сгоревший предохранитель: он так просто не выходит из строя. Явно в цепи ИБП возникло короткое замыкание или перегруз: придется искать дополнительно поврежденные детали.

Если повреждений нет, то импульсный блок питания размещают на диэлектрическом основании стола и подают на него 220 вольт.

Входное напряжение надо проверить мультиметром в режиме вольтметра, провести измерения на входе сетевого фильтра и после плавкой вставки предохранителя.

Шаг №3: проверка состояния сетевого фильтра и выпрямителя

Работоспособность этой схемы следует определять вольтметром в режиме измерения переменного напряжения. Обращайте внимание на величину его сигнала на входе и выходе. У исправного прибора амплитуда гармоник практически не должна отличаться.

Качество фильтрации посторонних помех хорошо показывает осциллограф, но если он отсутствует, то это не так уж и страшно. Его замеры могут понадобиться в исключительных случаях, их допустимо пропустить.

Также проверяется работа выпрямителя: вольтметр для замера выходного напряжения переключают в режим цепей постоянного тока. Его концы устанавливают на ножки электролитического конденсатора или их дорожки.

Когда напряжение на выходе из фильтра или выпрямителя не укладывается в норму, то придется проверять исправность всех деталей, которые входят в его схему.

В первую очередь обращайте внимание на электролитические конденсаторы, которые при излишнем нагреве усыхают, теряя емкость, а то и взрываются. Сразу оцените правильность их геометрической формы.

Любое малейшее искажение, особенно вздутый конденсатор - признак внутреннего повреждения. Если геометрия не нарушена, то приступают к электрическим замерам.

Стрелочным тестером это можно сделать двумя способами:

  1. Конденсатор разряжают. Прибор переводят в режим омметра и его внутренним источником заряжают емкость: просто щупы ставят на ножки и выдерживают небольшое время.

Затем цешку переводят в режим вольтметра и наблюдают за разрядом емкости. Способ приблизительный, оценочный, но довольно быстрый.

  • Более точно, но сложнее оценить конденсатор можно измерением его емкостного сопротивления. Через него пропускают синусоидальный ток, оценивают замерами его величину и падение напряжения. Хс. По нему рассчитывают емкость конденсатора C.

Цифровой мультиметр позволяет просто определить величину емкости обычным замером. Внутри него уже есть встроенный генератор, а процессы измерения тока с напряжением, как и вычисления, автоматизированы.

Во вторую очередь анализируйте исправность диодов. Все они, включая силовые, должны проводить ток только в одну сторону. Их работоспособность оценивают мультиметром в режиме омметра или прозвонки.

Шаг №4: проверка работы инвертора

Учитываем, что схема построения каждого высокочастотного генератора собирается не только из различных деталей, но и с большим разнообразием конструкторских решений.

Часто генератор объединен в составе электронной платы с высокочастотным трансформатором, а также выходным выпрямителем и фильтром. Мы будем исходить из того, что точной схемы построения ИБП у нас нет: проверяем ее по внешним, косвенным признакам.

Работаем мультиметром в режиме вольтметра: последовательно оцениваем амплитуды напряжений на разных точках инверторной схемы. Учитываем, что прибор показывает действующие величины, а не максимальные, амплитудные.

Осциллограф с делителем напряжений здесь более уместен: он покажет еще и форму каждого сигнала, что может значительно облегчить поиск неисправности.

Шаг №5: проверка выходных напряжений

Обращаю внимание, что многие ИБП, особенно компьютерные, на выходе имеют несколько цепей, отличающихся по величине напряжения, например, 12, 5 и 3,3 вольта. Причем они могут собираться на разные нагрузки.

Их все надо проверить электрическими замерами. Чтобы запустить компьютерный блок в работу необходимо закоротить управляющий сигнал запуска БП PS_On на нулевой провод черного цвета.

Подача напряжения питания на компьютерный ИБП в режиме холостого хода вредна для электронной схемы. Сокращается ресурс его работы.

Если в качестве нагрузки использовать рабочие блоки компьютера, например CD привод, HDD или материнскую плату, как иногда рекомендуют отдельные мастера, то велика вероятность того, что не устраненная еще неисправность блока питания повредит и их.

Шаг №6: проверка работы защиты от перегрузок

Операция проводится после проверки качества выходных напряжений на всех участках схемы.

Импульсные блоки питания для сложных электронных устройств (мониторы, цифровые телевизоры и подобная техника) имеют в своем составе токовую защиту. Она снимает питание с подключенной цепи при возникновении в ней опасных токов, превышающих номинальную величину.

Эта защита работает от встроенного датчика тока, сигнал с которого о перегрузке подается на управляющую микросхему. Она, в свою очередь, отключает питание выходным силовым контактом с создавшегося аварийного режима.

Тема эта очень большая, обширная. Принципы построения токовой защиты в импульсных блоках питания доступно объясняет владелец видеоролика Ростислав Михайлов.

Шаг №7: проверка схемы стабилизации выходных напряжений

На этом заключительном этапе оценивается работа блока управления инвертором при меняющемся входном напряжении питания по действию схемы обратной связи.

Алгоритм проверки состоит из следующих этапов:

  1. ИБП отключают от цепей входного напряжения 220 вольт.
  2. К выходу оптопары подключают стрелочный тестер, переключенный в режим омметра, хотя можно использовать и цифровой мультиметр.
  3. На выход блока питания +/-12 V подают постоянное напряжение от регулируемого источника, меняют его величину и контролируют срабатывание оптопары по показаниям омметра.

При пониженном напряжении оптопара будет иметь высокое электрическое сопротивление, а при достижении на схеме уровня 12 вольт ее выход откроется, и стрелка омметра резко снизит свои показания.

Такое срабатывание свидетельствует о совместной исправности стабилитрона, оптопары и схемы стабилизации.

Не помешает также отдельно проверить целостность силового транзистора. Но предварительно его необходимо выпаять из платы.

Если позволяют габариты блока, то его можно доработать заменой:

  • выпрямительных диодов повышенной мощности;
  • накопительных конденсаторов большей емкости и напряжения.

Такие простые действия продлят ресурс работы, на который рассчитан импульсный блок питания, а его ремонт своими руками принесет несомненную пользу владельцу. Если у вас возникнут вопросы по этой теме, то воспользуйтесь разделом комментариев. Я отвечу.

Большинство современной бытовой электронной аппаратуры имеет в своей конструкции самостоятельные или расположенные на отдельной плате электронные модули понижающие и выпрямляющие сетевое напряжение.

Причём последние 20 лет, вместо традиционных понижающе-выпрямительных схем на основе силового трансформатора и диодного моста, они построены по схеме импульсного преобразования напряжения. Несмотря на их высокую схемотехническую надежность они достаточно часто выходят из строя.

Причин здесь несколько, но основными из них являются:

  • колебания сетевого напряжения, на которые не рассчитаны эти понижающе-выпрямительные устройства;
  • несоблюдение правил эксплуатации;
  • подключение нагрузки, на которую не рассчитаны приборы.

Конечно бывает очень обидно, когда необходимо выполнить срочную работу, а модуль питания у компьютера неисправен или во время просмотра любимой телепередачи это устройство выходит из строя.

Не стоит сразу впадать в панику и обращаться в ремонтную мастерскую или спешить в супермаркет электроники за приобретением нового блока. Часто причины неработоспособности настолько тривиальны, что устранить их можно дома, с минимальными затратами финансовых средств и нервов.

Общее описание бытового импульсного питающего устройства

Конечно для того чтобы попытаться не только отремонтировать импульсный блок питания, но и определить его неисправность необходимо иметь базовые знания по электронике и обладать определенными электротехническими навыками.

Кроме того, следует помнить, что некоторые элементы блока находятся под сетевым напряжением, в силу чего даже при первичном осмотре устройства следует соблюдать осторожность. Однако большинство блоков построены по типовым схемам и имеют сходные неисправности, поэтому самостоятельно отремонтировать импульсный блок питания может попытаться каждый.

В составе любого источника питания, будь то встроенный, как в телевизоре или установленный в виде отдельного устройства, как в настольном компьютере, имеются два функциональных блока – высоковольтный и низковольтный.

В высоковольтном боке, сетевое напряжение преобразуется диодным мостом в постоянное, и сглаживается на конденсаторе до уровня 300,0…310,0 вольт. Постоянное, высокое напряжение преобразуется в импульсное, частотой 10,0…100,0 килогерц, что позволяет отказаться от массивных низкочастотных понижающих трансформаторов, заменив их малогабаритными импульсными.

В низковольтном блоке импульсное напряжение понижается до необходимого уровня, выпрямляется, стабилизируется и сглаживается. На выходе этого блока присутствует одно или несколько напряжений, необходимых для питания бытовой техники. Кроме того, в низковольтном блоке смонтированы различные управляющие схемы, позволяющие повысить надежность устройства и обеспечить стабильность выходных параметров.

Визуально, на реальной плате, различить высоковольтную и низковольтную часть достаточно просто. К первой подходят сетевые провода, а от второй отходят питающие.


Импульсный стабилизатор в блоке питания на транзисторах

Диагностирование и простейший ремонт

Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.

Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.

Как показывает статистика, основные неисправности блока питания вызваны:

  • неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
  • пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
  • пробоем диодного моста (15,0%) в низковольтной части;
  • пробоем (выгоранием) обмоток дросселя выходного фильтра.


В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.

Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.

При перегорании предохранителя необходимо осмотреть электронную плату. Неисправность фильтрующего электролитического конденсатора обычна выражена его вздутием. Для проверки диодов высоковольтной выпрямительной части придется выпаять каждый из них и (тестером).

Желательно проверку производить одновременно всех деталей. При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.

После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.

Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.

Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.

Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.


Ремонт стандартных устройств

Как уже говорилось, большинство блоков питания современных компьютеров и телевизоров построено по типовой схеме. Они отличаются типоразмерами используемых электронных деталей и выходной мощностью. Методика диагностирования и устранения неполадок для этих устройств идентичны.

Однако качественный ремонт требует соответствующего инструмента, в номенклатуру которого входят:

  • (желательно с регулируемой мощностью);
  • припой, флюс, спирт или очищенный бензин («Галоша);
  • приспособление для удаление расплавленного припоя (оловоотсос);
  • набор отверток;
  • бокорезы (кусачки);
  • бытовой мультиметр (тестер)
  • пинцет;
  • лампа накаливания на 100,0 ватт (используется в качестве балластной нагрузки).

Приступая к ремонту телевизионного питающего устройства или системы настольного компьютера желательно иметь их электрическую принципиальную схему. Сегодня сделать это нетрудно – подобные материалы для большинства моделей электронной техники можно найти в Интернете.

В принципе простые телевизоры можно ремонтировать без схемы, однако главной сложностью ремонта некоторых моделей является то, что питающее устройство вырабатывает весь спектр напряжений – включая высоковольтное, используемое для развертки кинескопа. Блоки питания бытовых компьютеров выполнены по однотипной схеме. Рассмотрим отдельно методику определения неисправности и ремонта телевизора и десктопа.

Ремонт телевизора

О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:

  • проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
  • разборка телевизионного приемника и освобождение электронной платы;
  • осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
  • проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.

Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов. К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.

В практике ремонта имеют место случаи, когда модуль питания не работает (не запускается) а предохранитель не сгорел. Это может свидетельствовать о пробое (перегорании) транзистора генератора высокочастотных импульсов.

Наиболее частыми причинами неработоспособности телевизионных блоков является:

  • обрыв балластных сопротивлений;
  • неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
  • неисправность конденсаторов фильтров вторичного напряжения;
  • пробой или перегорание выпрямительных диодов.

Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.

Здесь возможны несколько вариантов поведения отремонтированного устройства:

  1. Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
  2. Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:
    • пробит один из диодов выпрямительного моста;
    • велика утечка конденсатор (конденсатор «состарился»).

    Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.

  3. Если свечение лампочки велико, необходимо тут же отключить модуль питания от сети и заново провести проверку всех электронных деталей.

Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.


Ремонт питающего устройства настольного компьютера

Сегодня наибольшее распространение для питания настольных (десктопных) конструкторов получили устройства «АТХ» различной мощности. Поводом для их ремонта должно послужить:

  • материнская плата не запускается (компьютер полностью неработоспособен);
  • вентилятор охлаждения самого устройства не вращается;
  • блок многократно «пытается» самозапуститься.

Перед началом ремонта устройств «АТХ» необходимо собрать нагрузочную схему (рисунок). Ремонт осуществляют в следующей последовательности:

  • устройство вынимается из компьютера и с него снимается кожух;
  • пылесосом и кисточкой удаляется пыль с электронных плат и поверхностей деталей;
  • производится внешний осмотр электронных элементов и печатных плат;
  • подключается нагрузочное устройство.

При отсутствии внешних признаков причины неисправности проверяют предохранитель. В случае его перегорания на его место подключается лампа накаливания мощностью 100,0 ватт (аналогично ремонту телевизионного блока).

Если при включении лампа ярко вспыхивает и продолжает гореть, значит из строя вышел диодный мост в высоковольтной части или фильтрующий конденсатор. Возможно перегорание высоковольтного трансформатора.

Если предохранитель цел, то причиной неработоспособности может быть:

  • выход из строя транзисторов генератора импульсов;
  • неисправность ШИМ-контроллера.

В этих случаях проще приобрести новое устройство, которое в зависимости от мощности, стоит от 600…800 рублей.

При многократном самозапуске устройства причиной неработоспособности обычно является вход из строя стабилизатора опорного напряжения. При этом система компьютера не может пройти режим самотестирования отключает и включает модуль питания.