Технологическая схема производства контактной серной кислоты из колчедана. Принципиальная технологическая схема производства серной кислоты контактным способом Схема получения серной кислоты

Производство серной кислоты из серы

Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей :

особая конструкция печей для получения печного газа;

повышенное содержание оксида серы (IV) в печном газе;

отсутствие стадии предварительной очистки печного газа. Производство серной кислоты из серы по методу двойного контактирования и двойной абсорбции (рис. 4) состоит из нескольких стадий:

Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной серной кислотой до содержания влаги 0,01% по объему; Осушенный воздух поступает в серную печь после предварительного подогрева в одном из теплообменников контактного узла.

Сжигание (горение) серы представляет собой гомогенную экзотермическую реакцию, которой предшествуют переход твердой серы в жидкое состояние и ее последующее испарение:

Таким образом, процесс горения протекает в газовой фазе в потоке предварительно высушенного воздуха и описывается уравнением:

S + О2 > SO2 + 297,028 кДж;

Для сжигания серы используют печи форсуночного и циклонного типов. В форсуночных печах расплавленная сера распыляется в камере сгорания сжатым воздухом через форсунки, которые не могут обеспечить достаточно полного перемешивания паров серы с воздухом и необходимой скорости горения. В циклонных печах, работающих по принципу центробежных пылеуловителей (циклонов), достигается значительно лучшее смешивание компонентов и обеспечивается более высокая интенсивность горения серы, чем в форсуночных печах.

Затем газ, содержащий 8,5-9,5% SO3, при 200°С поступает на первую стадию абсорбции в абсорбер, орошаемый олеумом и 98%-ной серной кислотой:

SO3 + Н2О>Н2SO4+130,56 кДж;

Далее газ проходит очистку от брызг серной кислоты, нагревается до 420°С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной серной кислотой, и затем после очистки от брызг выбрасывается в атмосферу.

Печной газ при сжигании серы отличается более высоким содержанием оксида серы (IV) и не содержит большого количества пыли. При сжигании самородной серы в нем также полностью отсутствуют соединения мышьяка и селена, являющиеся каталитическими ядами.

Эта схема отличается простотой и получила название «короткой схемы» (рис. 5).

Рис. 4.

1-серная печь; 2-котел-утилизатор; 3 - экономайзер; 4-пусковая топка; 5, 6-теплообменники пусковой топки; 7-контактный аппарат; 8-теплообменники; 9-олеумный абсорбер; 10-сушильная башня; 11 и 12-соотв. первый и второй моногидратные абсорберы; 13-сборники кислоты.


Рис.5.

1 -- плавильная камера для серы; 2 -- фильтр жидкой серы; 3 -- печь для сжигания серы; 4 -- котел-утилизатор; 5 -- контактный аппарат; 6 -- система абсорбции оксида-серы (VI); 7-- холодильники серной кислоты

Существующие установки по производству серной кислоты из серы, снабженные печами циклонного типа, имеют производительность 100 т серы и более в сутки. Разрабатываются новые конструкции производительностью до 500 т/сут.

Расход на 1 т моногидрата: серы 0,34 т, воды 70 м3, электроэнергии 85 кВт-ч.

Производство серной кислоты из железного колчедана

Производство серной кислоты из сульфидов металлов существенно сложнее.

Технологическая схема производства серной кислоты из железного колчедана с использованием принципа двойного контактирования ДК--ДА показана на рисунке 6. Колчедан через дозатор подают в печь 1 кипящего слоя. Полученный запыленный обжиговый газ, содержащий 13 % SO2 и имеющий на выходе из печи температуру около 700°С, подают сначала в котел-утилизатор 3, а затем на стадию сухой очистки от огарковой пыли (в циклоны 4 и в сухой электрофильтр 5). В котле-утилизаторе 3 происходит охлаждение газа с одновременным получением энергетического водяного пара (давление 4 МПа и температура 450 °С), который может быть использован как в самой установке для компенсации затрат энергии на работу компрессоров и насосов, так и в других цехах завода.

В очистном отделении, состоящем из двух промывных башен 6 и 7, двух пар мокрых электрофильтров 8 и 9 и сушильной башни 10, происходит очистка газа от соединений мышьяка, селена, фтора и его осушка.

Первая полая промывная башня 6 работает в испарительном режиме: циркулирующая кислота охлаждает газ, при этом теплота затрачивается на испарение воды из кислоты, поступающей на орошение. Концентрацию орошающей кислоты в первой башне, равную 40... 50%-ной H2SO4, поддерживают постоянной путем разбавления 10... 15%-ной кислотой из второй промывной башни 7. Кислота из второй башни поступает в сборник 18 и после охлаждения возвращается на орошение.

После второй промывной башни газ проходит последовательно две пары мокрых электрофильтров 8 и 9, затем насадочную сушильную башню 10, орошаемую 93...94%-ной серной кислотой при температуре 28...30°С. Кислота циркулирует между сушильной башней 10 и сборником 18, часть кислоты отводится как готовая продукция на склад. Для поддержания постоянной концентрации H2SO4 в сборник кислоты 18 вводят 98... 99%-ную кислоту из моногидратных абсорберов 17 и 20. Для поддержания постоянной температуры на стадии осушки циркулирующую кислоту охлаждают в холодильнике воздушного охлаждения 22. Перед сушильной башней обжиговый газ разбавляют воздухом для снижения в нем концентрации SO2 до 9 % и увеличения избытка кислорода в соответствии с оптимальными условиями окисления диоксида серы.


Рис.4.

1 -- печь; 2 -- система гидроудаления огарка; 3 -- котел-утилизатор; 4 -- циклон с пересыпным устройством; 5 -- сухой электрофильтр; 6-- полая промывная башня; 7-- насадочная промывная башня; 8,9-- мокрые электрофильтры; 10-- сушильная башня; 11-- фильтр-брызгоуловитель; 12 -- турбогазодувка; 13 -- теплообменники контактного узла; 14 -- контактный аппарат; 15 -- пусковой подогреватель; 16 -- теплообменник; 17 -- второй моногидратный абсорбер; 18 -- сборник кислоты; 19 -- холодильник; 20 -- первый моногидратный абсорбер; 21 -- олеумный абсорбер; 22 -- холодильник воздушного охлаждения кислоты

После сушильной башни обжиговый газ проходит через фильтр-брызгоуловитель 11 и поступает в турбогазодувку 12. В теплообменниках 13 газ нагревается за счет теплоты продуктов реакции до температуры зажигания катализатора (420...440°С) и поступает на первый слой контактного аппарата, где происходит окисление 74 % SO2 с одновременным повышением температуры до 600°С. После охлаждения до 465°С газ поступает на второй слой контактного аппарата, где степень превращения достигает 86%, а температура газа возрастает до 514?С. После охлаждения до температуры 450?С газ поступает на третий слой контактного аппарата, где степень превращения SO2 увеличивается до 94...94,5 %, а температура повышается до 470°С.

Затем в соответствии с требованиями метода ДК--ДА реакционный газ охлаждают в теплообменниках 13 до 100°С и направляют на абсорбцию первой ступени: сначала в олеумный абсорбер 21, затем в моногидратный абсорбер 20. После моногидратного абсорбера и фильтра-брызгоуловителя газ вновь нагревают до температуры 430°С и подают на четвертый слой катализатора. Концентрация SO2 в газе составляет теперь 0,75...0,85 %. В четвертом слое происходит окисление остаточного SO2 с конверсией? 80 %, сопровождающееся повышением температуры до 449°С. Реакционную смесь вновь охлаждают до температуры 409°С и направляют на последний (пятый) слой контактного аппарата. Общая степень превращения после пяти стадий контактирования составляет 99,9%.

Газовую смесь после охлаждения направляют в моногидратный абсорбер второй ступени абсорбции 17. Непоглощенный газ, состоящий в основном из воздуха, пропускают через фильтр 11 для выделения брызг и тумана и выбрасывают в атмосферу через выхлопную трубу.

Производительность установки составляет до 1500 т/сут по моногидрату.

Расход на 1 т моногидрата: колчедана 0,82 т, воды 50 м3, электроэнергии 82 кВт -ч.

Производство серной кислоты из сероводорода

Способ получения серной кислоты из сероводорода, так называемый мокрый катализ (разработчики И.А.Ададуров, Д. Гернст, 1931 г.), состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в потоке воздуха, подается в контактный аппарат без разделения, где оксид серы (IV) окисляется при твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

Таким образом, в отличие от способов производства серной кислоты из колчедана и серы в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательных стадии :

1) сжигание сероводорода с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1:1):

H2S + 1,5О2 > SO2 + Н2О - ?Н

где?Н = 519 кДж

2) окисление оксида серы (IV) до оксида серы (VI) с сохранением эквимолекулярное™ состава смеси оксида серы (VI) и паров воды (1:1):

SO2 + 0,5О2 - SO3 - ?Н 2

где?Н 2 = 96 кДж

3) конденсация паров и образование серной кислоты:

SО3 + Н2О-H2SО4 - ?Н 3

где?Н 3 = 92 кДж.

Таким образом, процесс мокрого катализа описывается суммарным уравнением

H2S + 2О2 > H2SO4 - ?Н

где?Н= 707 кДж.

В качестве сырья при производстве серной кислоты по методу мокрого катализа используют высококонцентрированный сероводородный газ (объемная доля сероводорода до 90%), являющийся отходом некоторых производств.

Так как газ при выделении подвергается промывке, то не нуждается в особой стадии очистки, а продукты его сжигания не содержат вредных примесей и также не требуют очистки. Это наряду с отсутствием в технологической схеме стадии абсорбции существенно упрощает процесс производства.

Технологическая схема производства серной кислоты из сероводорода включает в себя следующие операции:

· сжигание сероводородного газа при большом избытке воздуха для исключения перегрева вследствие выделения большого количества теплоты;

· охлаждение газопаровой смеси от 1000 до 400?С в котле-утилизаторе;

· разбавление газопаровой смеси воздухом до оптимального для контактирования состава;

· контактирование в контактных аппаратах, термостатируемых введением воздуха между слоями катализатора;

· охлаждение конвертированного газа в башнях, орошаемых серной кислотой, с образованием продукционной серной кислоты и сернокислотного тумана, улавливаемого в электрофильтрах.

Теоретически, при абсолютно сухих сероводородном газе и воздухе, должна образоваться 100%-ная серная кислота. На практике вследствие присутствия в воздухе паров воды концентрация получаемой кислоты не превышает 96 %, при пересчете на сероводород -- 97 %. Производительность существующих установок, работающих по способу мокрого катализа, достигает 300 т/сут по моногидрату серной кислоты.

  • 7.3. Контактирование оксида серы (IV)
  • 7.5. Технологическая схема производства серной кислоты контактным методом
  • 7.1. Химическая и принципиальная схемы производства

    Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    Принципиальная (структурная) схема этого производства представлена на рис. 7.1.

    Рисунок 7.1 – Структурная схема производства серной кислоты из флотационного колчедана.

    • I – получение обжигового газа: 1 – обжиг колчедана; 2 – охлаждение газа в котле–утилизаторе; 3 – общая очистка газа; 4 – специальная очистка газа;
    • II – контактирование: 5 – подогрев газа в теплообменнике; 6 – контактирование;
    • III – абсорбция: 7 – абсорбция оксида серы (VI) и образование серной кислоты

    7.2. Окислительный обжиг колчедана

    Обжиг колчедана в токе воздуха представляет необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа:

    и окисления продуктов диссоциации

    что описывается общим уравнением:

    Скорость процесса окислительного обжига выражается общим для гетерогенных процессов уравнением

    • где К М – коэффициент массопередачи;
    • F – поверхность контакта фаз (катализатора);
    • D С – движущая сила процесса.

    Таким образом, скорость процесса обжига зависит от температуры (через К М), дисперсности обжигаемого колчедана (через F, концентрации дисульфида железа в колчедане и концентрации кислорода в воздухе (через DС)). На рис. 7.2 представлена зависимость скорости обжига колчедана от температуры и размеров частиц обжигаемого колчедана.

    Рисунок 7.2 – Зависимость скорости обжига колчедана от температуры (а) и размеров частиц (б)

    Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащение воздуха кислородом и применением избытка воздуха при обжиге до 30% сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 0 С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.

    В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10000 кг/м 2 ×сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 масс. долей) и контроль температуры, облегчают процесс утилизации теплоты. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи других типов в производстве серной кислоты из колчедана.

    Обжиговый (печной) газ и огарок - продукты окислительного обжига колчедана. Огарок, состоит из оксида железа (III), пустой породы и невыгоревшего остатка дисульфида железа.

    Состав обжигового газа зависит от природы сырья, состава и избытка воздуха при его обжиге. В него входят оксид серы (IV), кислород, азот и незначительное количество оксида серы (VI), образовавшегося за счет каталитического действия оксида железа (III). Если не учитывать содержание последнего, то соотношение между кислородом и оксидом серы (IV) в печном газе может быть выражено следующими уравнениями:

    • при обжиге колчедана С О2 = 21 – 1,296 С SO 2 ; (7.2а)
    • при сжигании серы С О2 = 21 – С SO 2 ; (7.2б)
    • при сжигании сероводорода С О2 = 21 – 1,605С SO 2 , (7.2в)

    где С SO 2 и С О2 – содержание оксида серы (IV) и кислорода в печном газе.

    На практике при обжиге колчедана печной газ содержит 13–14% оксида серы (IV), 2 % кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) 7–9% и кислорода 11–9%.

    7.3. Очистка обжигового (печного) газа

    Обжиговый газ необходимо очистить от пыли, сернокислотного тумана и веществ, являющихся каталитическими ядами или представляющих ценность как побочные продукты. В обжиговом газе содержится до 300 г/м 3 пыли, которая на стадии контактирования засоряет аппаратуру и снижает активность катализатора, а также туман серной кислоты. Кроме того, при обжиге колчедана одновременно с окислением дисульфида железа окисляются содержащиеся в колчедане сульфиды других металлов. При этом мышьяк и селен образуют газообразные оксиды As 2 O 3 и SeO 2 , которые переходят в обжиговый газ и становятся каталитическими ядами для ванадиевых контактных масс.

    Пыль и сернокислотный туман удаляют из обжигового газа в процессе общей очистки газа, которая включает операции механической (грубой) и электрической (тонкой) очистки. Механическая очистка газа осуществляется пропусканием газа через центробежные пылеуловители (циклоны) и волокнистые фильтры, снижающие содержание пыли в газе до 10–20 г/м 3 . Электрическая очистка газа в электрофильтрах снижает содержание пыли и тумана в газе до 0,05–0,1 г/м 3 .

    После общей очистки обжиговый газ, полученный из колчедана, обязательно подвергается специальной очистке для удаления остатков пыли и сернокислотного тумана и, главным образом, соединений мышьяка и селена, которые при этом утилизируют. Специальная очистка газа включает операции охлаждения его до температуры ниже температур плавления оксида мышьяка (315 0 С) и селена (340 0 С) в башнях, орошаемых последовательно 50% (полая башня) и 20% серной кислотой (башня с насадками), удаления сернокислотного тумана в мокрых электрофильтрах и завершающей осушки газа в скрубберах, орошаемых 95% серной кислотой. Из системы специальной очистки обжиговый газ выходит с температурой 140–150 0 С.

    Оксид селена (IV), извлекаемый из обжигового газа, восстанавливается растворенным в серной кислоте оксидом серы (IV) до металлического селена: который осаждается в отстойниках.

    Новым прогрессивным методом очистки обжигового газа является адсорбция содержащихся в нем примесей твердыми поглотителями, например, силикагелем или цеолитами. При подобной сухой очистке обжиговый газ не охлаждается и поступает на контактирование при температуре около 400 0 С, вследствие чего не требует интенсивного дополнительного подогрева.

    7.3. Контактирование оксида серы (IV)

    Процесс контактирования обжигового газа – реакция окисления оксида серы IV) до оксида серы (VI), представляет собой гетерогенно–каталитическую, обратимую, экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 0 С и около 93 кДж при температуре контактирования. Система «SO 2 – O 2 – SO 3 » характеризуется состоянием равновесия в ней и скоростью процесса окисления оксида серы (IV), от которых зависит суммарный результат процесса.

    7.3.1. Равновесие в системе

    Константа равновесия реакции окисления оксида серы (IV) равна

    где: p SO 3 , p SO 2 , p O 2 – равновесные парциальные давления оксида серы (VI), оксида серы (IV) и кислорода соответственно.

    Степень превращения оксида серы (IV) в оксид серы (IV) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования и описывается уравнением

    где p SO 3 и p SO 2 –те же величины, что и в (7.3).

    Из уравнений 7.3 и 7.4 следует, что равновесная степень превращения оксида серы (IV) связана с константой равновесия реакции окисления уравнением

    где К р – константа равновесия.

    Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе представлена в таблице 7.2 и на рис. 7.3.

    Таблица 7.2 – Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе

    Температура, 0 С*

    Давление, МПа**

    * При давлении 0,1 МПа и содержании оксида серы (IV) 0,07 об. долей.

    ** При температуре 400 0 С и содержании оксида серы (IV) 0,07 об.долей.

    Рисунок 7.3 – Зависимость равновесной степени превращения оксида серы (IV) в оксид серы (VI) от температуры (а), давления (б) и содержания оксида серы (IV) в газе (в)

    Из уравнения 7.5 и табл. 7.2 следует, что с понижением температуры и повышением давления контактируемого газа равновесная степень превращения Х р возрастает, что согласуется с принципом Ле–Шателье. В то же время при постоянных температуре и давлении равновесная степень превращения тем больше, чем меньше содержание оксида серы (IV) в газе, то есть чем меньше отношение SO 2: O 2 . Это отношение зависит от вида обжигаемого сырья и избытка воздуха. На этой зависимости основана операция корректирования состава печного газа, то есть разбавление его воздухом для снижения содержания оксида серы (IV).

    Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 1.4). Следовательно, время контактирования должно быть таким, чтобы обеспечить достижение равновесия в системе. Из рис. 1.4 следует, что чем выше температура, тем скорее достигается равновесие (t 1 < t 2), но тем меньше равновесная степень превращения (Х 1 < X 2 при Т 1 > T 2). Таким образом, выход оксида серы (VI) зависит как от температуры, так и от времени контактирования. При этом для каждого времени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис.1.5) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой.

    7.3.2. Скорость окисления оксида серы (IV)

    От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достигаемой в данных условиях.

    Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому при отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления в соответствии с зависимостью для константы скорости:

    • где k 0 – константа скорости химической реакции;
    • E – энергия активации, Дж/моль;
    • R – универсальная газовая постоянная (8,326 Дж/моль * К);
    • T – температура, 0 К.

    Если без катализатора реакция окисления 2SO 2 + O 2 = 2 SO 3 протекает как реакция третьего порядка с энергией активации более 280 кДж/моль, то в присутствии ванадиевого катализатора ее порядок снижается до 1,8, а энергия активации составляет 92 кДж/моль.

    В производстве серной кислоты в качестве катализатора применяют константные массы на основе оксида ванадия (V) марок БАВ и СВД, названные так по начальным буквам элементов, входящих в их состав:

    БАВ (барий, алюминий, ванадий) состава:

    СВД (сульфо-ванадато-диатомовый) состава:

    Предполагается, что процесс окисления оксида серы (IV) на этих катализаторах идет через стадию диффузии реагентов к поверхности катализатора, на которой образован комплекс оксида ванадия (V) с активатором, сорбции реагентов на катализаторе с последней десорбцией продукта реакции (оксида серы (VI)):

    Схема действия ванадиевого катализатора представлена на рис. 1.6.

    Рисунок 7.6 – Схема действия катализатора: I – диффузия; II – сорбция; III – образование комплекса; IV – десорбция

    Процесс катализа состоит из нескольких последовательно протекающих элементарных актов: диффузии молекул азота, кислорода и оксида серы (IV) к катализатору (I), хемосорбции молекул реагентов на поверхности катализатора (II), химического взаимодействия кислорода и оксида серы (IV) на поверхности катализатора с переносом электронов от молекул оксида серы к молекулам кислорода и образованием неустойчивых комплексов (III) , десорбции образовавшихся молекул оксида серы (VI) (IV) и диффузии их из пор и с поверхности катализатора в газовую фазу.

    Температура зажигания контактных ванадиевых масс составляет 380–420 0 С и зависит от состава контактируемого газа, повышаясь с уменьшением содержания в нем кислорода. Контактные массы должны находиться в таком состоянии, чтобы были обеспечены минимальное гидравлическое сопротивление потоку газа и возможность диффузии компонентов через слой катализатора. Для этого контактные массы для реакторов с неподвижным слоем катализатора формуются в виде гранул, таблеток или колец средним диаметром около 5 мм, а для реакторов кипящего слоя в виде шариков диаметром около 1 мм.

    Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относятся уравнение 1.7, связывающее скорость реакции со степенью превращения оксида серы (IV) , константой скорости реакции, константой равновесия и давлением газа:

    • где Х – равновесная степень превращения оксида серы (IV);
    • k – константа скорости реакции окисления;
    • а – начальная концентрация оксида серы (IV) в газе;
    • b – начальная концентрация кислорода в газе;
    • Р – общее давление газа;
    • К р – константа равновесия реакции.

    Из уравнений 7.7 и 7.8 следует, что скорость окисления зависит от константы скорости реакции, сильно возрастающей при повышении температуры (уравнение 1.6). Однако при этом уменьшается константа равновесия К р (уравнение 1.3) и уменьшается значение члена в уравнении 1.7. Таким образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температуры в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения 1.7 также следует, что скорость окисления оксида серы (IV) тем больше, чем меньше достигаемая в этом процессе степень превращения оксида серы (IV) в оксид серы (VI). Вследствие этого для каждой степени превращения зависимость скорости реакции от температуры будет выражаться индивидуальной кривой, имеющей максимум. На рис. 7.7 представлена серия подобных кривых, соответствующих различным степеням превращения для газа постоянного состава. Из него следует, что скорость реакции окисления достигает максимума при определенных значениях температур, которые тем выше, чем меньше эта степень превращения. Линия АА, соединяющая точки оптимальных температур, называется линией оптимальной температурной последовательности (ЛОТ) и указывает, что для достижения наилучших результатов процесс контактирования следует начинать при высокой температуре, обеспечивающей большую скорость процесса (на практике около 600 0 С), а затем для достижения высокой степени превращения снижать температуру, выдерживая температурный режим по ЛОТ.

    Рисунок 7.7 – Зависимость скорости окисления оксида серы (IV) от температуры при различных степенях превращения Х1

    Линии ВВ и СС на рис. 1.7 очерчивают область допустимых колебаний температуры в реальном технологическом процессе контактирования.

    Обеспечение высокой температуры в начале процесса окисления требует больших затрат энергии на подогрев газа, поступающего на контактирование. Поэтому на практике температуру газа на входе в контактный аппарат, поступающего на первый слой катализатора, задают лишь несколько выше температуры зажигания (порядка 420 0 С). В ходе реакции выделяется большое количество тепла, и так как процесс в слое катализатора идет без отвода тепла, то температура газа повышается по адиабате 1, пока не достигает величины, равной 0,8 ЛОТ (рис.7.8). После этого газ охлаждают в теплообменнике (линия а) до тех пор, пока температура не достигнет величины 0,8 ЛОТ. После теплообменника газ направляют на второй слой катализатора и ведут процесс по адиабате 2, затем снова охлаждают и продолжают процесс до тех пор, пока не будет достигнута заданная степень контактирования Х. Обычно для этого достаточно иметь в контактном аппарате 4–5 слоев контактной массы. В табл. 7.3 представлен температурный режим 4–слойного контактного аппарата с промежуточным теплообменом, установленный в соответствии с изложенным выше принципом.

    Рисунок 7.8 – Диаграмма контактирования для 4 слоев Кт: 1,2,3,4 – адиабаты; а, б, в, г – линии охлаждения

    Таблица 7.3 – Температурный режим контактного узла

    Таким образом, противоречие между кинетикой и термодинамикой процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям протекания процесса контактирования. Тем самым определяются и начальные параметры режима контактирования: температура 400–440 0 С, давление 0,1 Мпа, содержание оксида серы (IV) в газе 0,07-0,09 об. Долей, содержание кислорода в газе 0,09- 0,11 об. долей.

    Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4–5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха или с помощью встроенных в аппарат или вынесенных отдельно теплообменников (принцип рекуперации).

    Рисунок 7.9 – Конструкции контактных аппаратов: а – контактный узел: 1 – контактный аппарат, б – контактный аппарат кипящего слоя; 2 - теплообменник.

    Совокупность контактного аппарата, теплообменников и газопроводов представляет контактный узел. На рис. 7.9 представлены контактный узел, состоящий из контактного аппарата фильтрующего типа, и выносных теплообменников, и контактный аппарат кипящего слоя.

    К преимуществам контактных аппаратов кипящего слоя относятся:

    • высокий коэффициент теплоотдачи от катализатора в состоянии кипящего слоя к поверхности теплообменника (в 10 раз больше, чем от газа), что позволяет без перегрева вести контактирование печного газа с высоким содержанием оксида серы (IV) и снизить температуру зажигания катализатора;
    • нечувствительность к пыли, вносимой вместе с печным газом.

    7.3.3. Двойное контактирование

    Важнейшей задачей совершенствования сернокислотного производства являются увеличение степени контактирования и снижение выбросов оксида серы (IV) в атмосферу. В обычном процессе повышение степени контактирования выше 0,98 дол. Единицы нецелесообразно, так как связано с резким увеличением количества и числа слоев контактной массы. Однако даже при этой максимальной для обычного процесса степени контактирования выброс оксида серы (IV) может достигать на современных установках 35–60 т/сутки. Помимо значительных потерь продукции это вызывает необходимость в сложных и дорогостоящих очистных сооружениях для нейтрализации отходящих газов.

    Метод двойного двойного контактирования двойной абсорбции (ДКДА) применяют для увеличения конечной степени контактирования и ведут процесс окисления оксида серы (IV) в две стадии. На первой стадии контактирование ведут до степени превращения, не превышающей 0,90–0,92 дол. , после чего из контактированного газа выделяют оксид серы (VI). Затем проводят вторую стадию контактирования до степени превращения оставшегося в газе оксида серы (IV) 0,95 дол. единицы. Конечная степень контактирования определяется в этом случае как

    • где Х 1 – степень контактирования на первой стадии;
    • Х 2 – степень контактирования на второй стадии.

    Метод двойного контактирования позволяет повысить степень контактирования до 0,995 дол. ед. и на несколько порядков снизить выброс оксида серы (IV) в атмосферу. На рис. 7.10 представлена схема двойного контактирования с использованием контактного аппарата фильтрующего типа, применяемая в установках ДК–ДА.

    Рисунок 7.10 – Схема двойного контактирования

    7.4. Абсорбция оксида серы (VI)

    Абсорбция оксида серы (VI) является последней стадией в производстве серной кислоты контактным способом из контактированного газа и превращение его в серную кислоту или олеум. Абсорбция оксида серы (VI) представляет обратимую экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от значения n и для n = 1 (образование моногидрата серной кислоты) равен 92 кДж.

    В зависимости от количественного соотношения оксида серы (VI) и воды может быть получен продукт различной концентрации:

    • при n > 1 олеум;
    • при n = 1 моногидрат (100% серная кислота);
    • при n < 1 водный раствор кислоты (разбавленная серная кислота).

    Для процесса абсорбции оксида серы (VI) существенное значение имеет природа абсорбента. Скорость абсорбции описывается уравнением

    • где К – коэффициент абсорбции;
    • F – поверхность раздела фаз «абсорбент–газ»;
    • Dр – движущая сила процесса абсорбции.

    Движущая сила процесса абсорбции

    Так как p* SO 3 задается составом газа, то движущая сила и, следовательно, скорость процесса абсорбции будут тем больше, чем меньше равновесное давление оксида серы (VI) над сорбентом.

    Кроме этого, при высоком равновесном давлении над сорбентом паров воды p* Н2О вследствие взаимодействия молекул воды с молекулами оксида серы (VI) образуются пары серной кислоты, конденсирующиеся с возникновением трудно улавливаемого тумана серной кислоты:

    Таким образом, наилучшей поглощающей способностью будет обладать абсорбент с минимальным равновесным давлением над ним оксида серы (VI) и паров воды. Этому условию в максимальной степени удовлетворяет азеотроп серной кислоты концентрацией 98,3%. Использование серной кислоты более низкой концентрации приводит к интенсивному образованию тумана, а применение 100% кислоты или олеума – к снижению степени абсорбции. На рис. 7.11 представлена зависимость скорости абсорбции оксида серы (VI) от концентрации серной кислоты, используемой в качестве абсорбента.

    Абсорбция оксида серы (VI) сопровождается выделением значительного количества тепла. Поэтому для обеспечения полноты поглощения оксида серы (VI) процесс ведут при охлаждении газа и абсорбента до 80 0 С и используют аппараты с большим абсорбционным объёмом.

    На рис. 7.11 представлена схема абсорбции.

    Рисунок 7.11 – Схема двухстадийного процесса абсорбции:

    1. холодильник газа;
    2. олеумный абсорбер;
    3. моногидратный абсорбер;
    4. сушильная башня;
    5. холодильник жидкого продукта;
    6. сборник олеума;
    7. сборник моногидрата

    Подобная схема абсорбции позволяет получать, кроме контактной серной кислоты концентрацией 92–93%, также олеум различной концентрации.

    7.5. Технологическая схема производства серной кислоты контактным методом

    В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДК–ДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки печного газа, технологически однотипных для всех схем, представлена на рис. 7.12

    Рисунок 7.12 – Технологическая схема производства серной кислоты из колчедана двойным контактированием ДК–ДА

    1. полая промывная башня;
    2. промывная башня с насадкой;
    3. увлажнительная башня;
    4. электрофильтры;
    5. сушильная башня;
    6. турбогазодувка;
    7. сборник 75% кислоты;
    8. сборник продукционной кислоты;
    9. теплообменники;
    10. контактный аппарат;
    11. олеумный абсорбер;
    12. моногидратныq абсорбер.
    13. моногидратныq абсорбер.
      Потоки продуктов:
      • I – охлажденная 98% кислота;
      • II – продукционная кислота на охлаждение;
      • III – охлажденный олеум или моногидрат;
      • IV – продукционный олеум на охлаждение.

    Производительность установки до 1500 т/сут. по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт*ч.

    7.6. Товарные сорта серной кислоты

    Современная промышленность выпускает несколько сортов серной кислоты и олеума, различающихся концентрацией и чистотой (табл.7.4). Чтобы уменьшить возможность кристаллизации продуктов при перевозке и хранении, а также в самом производстве, установлены стандарты на товарные сорта, концентрации которых отвечают эвтектическим составам с наиболее низкими температурами кристаллизации.

    При определении технико–экономических показателей сернокислотного производства расчеты производимой продукции ведутся, обычно, на 100% серную кислоту (моногидрат). Для пересчета массы олеума на массу моногидрата используется формула

    Таблица 7.4 – Товарные сорта серной кислоты и олеума

    Пример решения задачи

    Составить материальный баланс сушильного отделения обжигового газа. Объём обжигового газа V м 3 . Состав обжигового газа (% об): SO2 – a, O2 – b, N2 – 79. Водяных паров в газе 138 м3 или 110,9 кг. Газ разбавляется воздухом до 7,5% об. SO2. Водяные пары поглощаются серной кислотой с массовой долей ω1 = 94%. Кислота разбавляется до массовой доли ω2 = 93,5%. Уходящий из сушильного отделения газ содержит 0,2 г/м3 водяных паров. М SO2 = 64 г/моль, М О2 = 32 г/моль, М N2 =28 г/моль.

    Исходные данные

    V обж.газа = 1000 м 3 ; а – 9,6 % (об.) b – 11,4 % (об.)

    Решение

    Рассчитаем состав сухого обжигового газа:

    V SO 2 = a∙ V обж.газа /100 = 9.6 ∙1000/100 = 276,38 м 3 , или m SO 2 = V SO 2 ∙ М SO 2 /22.4 =789,66м 3 .

    Аналогичным образом рассчитывают объём и массу кислорода и азота, входящих в состав обжигового газа, и данные заносят в таблицу:

    Объем сухого газа после разбавления его воздухом

    Объем сухого воздуха, который нужно добавить к газу

    Принимаем относительную влажность воздуха равной 50% (0,5 долей единицы) и температуру воздуха 23◦С. Этой температуре соответствует давление насыщенного водяного пара Р=2786,4 Па (20,9 мм рт.ст.)

    Объем влаги, вносимой воздухом:

    Состав воздуха, добавленного к газу

    Общая масса влаги, вносимая газом и воздухом mH2O,общ. = 110,90 + 9,03 = 119,03 кг

    Масса влаги в газе, уходящем из сушильного отделения

    Масса влаги, поглощаемой кислотой

    mH2O,погл. = mH2O,общ. – mH2O,ух.= 119,93 – 0,74 = 119,19 кг

    Массу кислоты х, необходимой для осушки газа, вычисляем по уравнению баланса моногидрата в поступающей и уходящей кислоте:

    х ω1 H2SO4 = (х + mH2Oпогл.) = ω2 H2SO4

    0,94х = (х+119,19) 0,935

    0,94х – 0,935х = 111,44

    Объем кислоты (S = 1800 кг/м3)

    Исходя из практических данных принимаем, что 0,3% (об.) SO2 извлекается из газа, растворяясь в H2SO4. Масса растворившегося в кислоте оксида серы (IV) SO2 составляет

    mSO2,раств. = VSO2 0,003 = 276,38 0.003 = 0,83 м3 или 2,37 кг

    Выходящий из сушильного отделения газ содержит

    276,38 – 0,83 = 275,55

    2274,1 + 636,8 = 2911,21

    328,21 + 169,27 = 497,48

    Масса выходящей из сушильного отделения кислоты

    mH2SO4 вых. = х + mH2O погл.+ mSO2 раств. = 22288 + 119,19 + 2,37 = 22409,56

    Массовая доля H2SO4 в этой кислоте

    Материальный баланс процесса осушки обжигового газа

    27547,29

    27547,30

    4. Краткое описание промышленных способов получения серной кислоты

    Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

    где I - стадия получения печного газа (оксида серы (IV)),

    II - стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

    В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

    В общем случае производство серной кислоты может быть выражено в следующем виде:

    Сырье подготовка сырья сжигание (обжиг) сырья

    очистка печного газа контактирование абсорбция

    контактированного газа СЕРНАЯ КИСЛОТА

    Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

    В зависимости от того, как осуществляется процесс окисления SО 2 в SО 3 , различают два основных метода получения серной кислоты.

    В контактном методе получения серной кислоты процесс окисления SО 2 в SО 3 проводят на твердых катализаторах.

    Триоксид серы переводят в серную кислоту на последней стадии процесса - абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

    SО 3 + Н 2 О Н 2 SО 4

    При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

    Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

    SО 3 + N 2 О 3 + Н 2 О Н 2 SО 4 + 2NО

    В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

    1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    Окисление дисульфида железа пиритного концентрата кислородом воздуха:

    4FеS 2 + 11О 2 = 2Fе 2 S 3 + 8SО 2 ,

    Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

    2SО 2 + О 2 2SО 3

    Абсорбция оксида серы (VI) с образованием серной кислоты:

    SО 3 + Н 2 О Н 2 SО 4

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся:

    Особая конструкция печей для получения печного газа;

    Повышенное содержание оксида серы (IV) в печном газе;

    Отсутствие стадии предварительной очистки печного газа.

    Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора

    3) Существует также способ производства серной кислоты из сероводорода, получивший название "мокрого" катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт.

    Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии:

    1. Сжигание сероводорода:

    Н 2 S + 1,5О 2 = SО 2 + Н 2 О

    с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1: 1).

    2. Окисление оксида серы (IV) до оксида серы (VI):

    SО 2 + 0,5О 2 <=> SО 3

    с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1: 1).

    3. Конденсация паров и образование серной кислоты:

    SО 3 + Н 2 О <=> Н 2 SО 4

    таким образом, процесс мокрого катализа описывается суммарным уравнением:

    Н 2 S + 2О 2 = Н 2 SО 4

    Существует схема получения серной кислоты при повышенном давлении. Влияние давления на скорость процесса возможно оценить в кинетической области, где практически отсутствует влияние физических факторов. Повышение давления влияет как на скорость процесса, так и на состояние равновесия. Скорость реакции и выход продукта с повышением давления увеличиваются за счет повышения действующих концентраций SO 2 и О 2 и увеличения движущей силы процесса. Но при увеличении давления так же возрастают производственные затраты на сжатие инертного азота. Так же увеличивается температура в контактном аппарате, т.к. при высоком давлении и невысокой температуре значение константы равновесия мало, по сравнению со схемой под атмосферным давлением.

    Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления:

    1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств.

    2. Повышение единичной мощности установок. Увеличение мощности в два-три раза снижает себестоимость продукции на 25 - 30%.

    3. Интенсификация процесса обжига сырья путем использования кислорода или воздуха, обогащенного кислородом. Это уменьшает объем газа, проходящего через аппаратуру, и повышает ее производительность.

    4. Повышение давления в процессе, что способствует увеличению интенсивности работы основной аппаратуры.

    5. Применение новых катализаторов с повышенной активностью и низкой температурой зажигания.

    6. Повышение концентрации оксида серы (IV) в печном газе, подаваемом на контактирования.

    7. Внедрение реакторов кипящего слоя на стадиях обжига сырья и контактирования.

    8. Использование тепловых эффектов химических реакций на всех стадиях производства, в том числе, для выработки энергетического пара.

    Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО 2 в SО 3 . Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы - снизить выбросы в окружающую среду вредного компонента SО 2 .

    Для решения этой проблемы велось много различных исследований в различных областях: абсорбция SO 2 , адсорбция, исследования в изменении конструкции контактного аппарата.

    Существую различные конструкции контактных аппаратов:

    Контактный аппарат с одинарным контактированием: такой аппарат характеризуется невысокой степенью превращения диоксида серы в триоксид. Недостаток этого аппарата заключается в том, что газ, выходящий из контактного аппарата, имеет высокое содержание диоксида серы, что отрицательно сказывается с экологической точки зрения. Используя данный аппарат, отходящие газы необходимо очистить от SO 2 . Для утилизации SO 2 существует много различных способов: абсорбция, адсорбция,…. Это, конечно, снижает количество выбросов SO 2 в атмосферу, но это увеличивает, в свою очередь, количество аппаратов в технологическом процессе, высокое содержание SO 2 в газе после контактного аппарата показывает низкую степень использования SO 2 , поэтому данные аппараты в производстве серной кислоты не используюися.

    Контактный аппарат с двойным контактированием: ДК позволяет достичь того же минимального содержания SO 2 в выхлопных газах, что и после химической очистки. Метод основан на известном принципе Ле-Шателье, согласно которому удаление одного из компонентов реакционной смеси сдвигает равновесие в сторону образования этого компонента. Сущность метода заключается в проведении процесса окисления диоксида серы с выделением триоксида серы в дополнительном абсорбере. Метод ДК позволяет перерабатывать концентрированные газы.

    Контактный аппарат с промежуточным охлаждением. Сущность метода заключается в том, что газ, поступающий в контактный аппарат, пройдя через слой катализатора, попадает в теплообменник, там газ охлаждается, затем поступает на следующий слой катализатора. Этот метод так же увеличивает степень использования SO 2 и содержание его в выхлопных газах.

    Автоматизация отделения получения серной кислоты по методу мокрого катализа

    Процесс получения серной кислоты из сероводорода коксового газа по методу мокрого катализа осуществлен в отечественной и зарубежной промышленности на ряде установок различной производительности - от одной до ста тонн моногидрата в сутки...

    Исследование кинетики реакции алкилирования изобутана изобутиленом до изооктана методом математического моделирования

    Данный процесс осуществляется статическим способом. Он проходит в замкнутых закрытых реакторах при постоянном объеме. При проведении реакции в таких условиях теми параметрами, которые влияют на ход реакции, являются температура...

    Получение сернистого ангидрида в производстве серной кислоты

    Функциональная схема производства серной кислоты. Химическая схема включает в себя реакции: обжиг серного колчедана 4FeS2 + 11О2 = 2Fe2O3 + 8SO2 или серы S2 + 2O2 = 2SO2; окисление диоксида серы SO2 + 1/2O2 = SO3; абсорбция триоксида серы SO3 + Н2O = H2SO4...

    Производство полиэтилена методом низкого давления

    полимеризация этилен пожарный циклогексан Полиэтилен и полипропилен получают путем полимеризации соответственно этилена и пропилена методом низкого давления с использованием в качестве катализатора слабого раствора триэтилаллюминия в...

    Производство серной кислоты

    Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV). Природные залежи самородной серы невелики, хотя кларк ее равен 0...

    Производство серной кислоты

    Конденсация парой серной кислоты. В некоторых случаях, газ, используемый для получения серной кислоты, не содержит вредных примесей (мышьяка, фтора). Тогда экономически целесообразно не подвергать такой газ промывке в специальной аппаратуре...

    Производство серной кислоты

    В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава : При >>1 - это моногидрат серной кислоты (100%-ная кислота), при < - водные растворы моногидрата...

    Производство серной кислоты

    На рисунке 6 изображена технологическая схема получения серной кислоты контактным методом на колчедане. Рисунок 6 -Технологическая схема получения серной кислоты контактным методом на колчедане 19 1,2-промывные башни; 3...

    Производство серной кислоты

    Еще в XIII в. серную кислоту получали в незначительных количествах термическим разложением железного купороса FeSO4, поэтому и сейчас один из сортов серной кислоты называется купоросным маслом...

    Производство серной кислоты при повышенном давлении

    Сырьевая база производства серной кислоты - это серосодержащие соединения, из которых с помощью обжига можно получить диоксид серы. В промышленности около 80% серной кислоты получают из природной серы и железного колчедана...

    Разработка процесса производства изопропилбензола на ОАО "Омский каучук"

    Известны три основных способа получения изопропилбензола, имеющие промышленное значение: 1. Алкилирование бензола пропиленом в присутствия безводного хлористого алюминия (алкилирование по Фриделю - Крафтсу). 2...

    Разработка технологии получения серной кислоты обжигом серного колчедана

    Все промышленные методы синтеза серной кислоты основаны на следующих этапах: 1) первой стадией процесса является окисление сырья с получением обжигового газа, содержащего оксид серы SO2...

    Разработка технологии получения серной кислоты обжигом серного колчедана

    В промышленности применяют два метода получения серной кислоты, отличающихся способом окисления SO2: -нитрозный - с применением оксидов азота, получаемых из азотной кислоты, -контактный - с использованием твердых катализаторов (контактов)...

    Сернокислотное алкилиривание изобутана бутиленом

    Концентрация кислоты. Для С-алкилирования бутан-бутиленовых углеводородов обычно используют серную кислоту, содержащую от 88 до 98 % моногидрата...

    Описание схемы производства серной кислоты

    Процесс производства серной кислоты можно описать следующим образом.

    Первым этапом является получение диоксида серы окислением (обжигом) серосодержащего сырья (необходимость в этой стадии отпадает при использовании в качестве сырья отходящих газов, так как в этом случае обжиг сульфидов является одной из стадий других технологических процессов).

    Обжиговый газ 350-400 о С о С

    Получение обжигово газа. Для стабилизации процесса обжига в кипящем слое автоматически регулируется: концентрация SO2 в газе, количество воздуха, поступающего в печь, высота кипящего слоя и разрежение в печи. Постоянство объема сернистого газа и концентрации в нем SO2 на выходе из печи поддерживается путем автоматического регулирования подачи воздуха и колчедана в печи в зависимости от температуры отходящего газа. Количество воздуха, подаваемого в печь, регулируется при помощи регулятора, воздействующего на положение дроссельной заслонки в патрубке воздуходувки. Стабильность концентрации SO2 в газе перед электрофильтром обеспечивается автоматическим регулятором путем изменения оборотов питателя подающего колчедан в печь. Высота кипящего слоя в печи регулируется скоростью удаления огарка путем изменения регулятором скорости вращения разгрузочного шнека или степени открытия секторного затворена выгрузке огарка. Постоянное разрежение в верхней части печи поддерживается регулятором, который соответственно изменяет положение дроссельной заслонки перед вентилятором.

    Обжиговый газ 350-400 о С поступает в полую промывную башню где охлаждается до 80 о С орошающую башню 60-70% серной кислотой.

    Из полой промывной башни газ поступает на вторую промывную башню с насадкой где орошается 30% серной кислотой и охлаждается до 30 о С.

    В промывных башнях газ освобождается от остатков пыли в каплях серной кислоты растворяются оксиды мышьяка и селена, которые присутствуют в обжиговом газе и являются ядом для катализатора в контактном аппарате. Туман серной кислоты с растворенными в нем оксидами мышьяка и серы осаждается в мокрых электрофильтрах.

    Окончательная осушка обжигового газа после электрофильтра осуществляется в абсорбционном колоне с насадкой

    концентрированной серной кислотой (93-95%).

    Отчищенный сухой газ SO2 подается в теплообменник. где подогревается горячими газами из контактного аппарата.

    Газ поступает в контактный аппарат и окисляется до SO3. Катализатором является пентооксид ванадия.

    Горячий газ SO3 (450-480 о С), выходящий из контактного аппарата поступает в теплообменник, отдает тепло свежему газу, далее поступает в холодильник и затем направляется на абсорбцию.

    Абсорбция SO3 происходит в двух последовательно расположенных башнях. Первая походу башня орошается олеумом. Содержащем 18-20% SO3 (своб.) Вторая башня орошается концентрированной серной кислотой. Таким образом, в процессе производства образуется два продукта: олеум и концентрированная серная кислота.

    Отработанные газы, содержащее остатки SO2 пропускают через щелочные абсорберы, которые орошаются аммиачной водой и в результате сульфит аммония.

    1.3 Основное основного технологического оборудования

    В процессе производства серной кислоты используют следующее технологическое оборудование:

    1. Промывная башня.

    2. Промывная башня с насадкой.

    3. Мокрый фильтр.

    4. Сушильная башня.

    5. Турбокомпрессор.

    6. Трубчатый теплообменник.

    7. Контактный аппарат.

    8. Трубчатый холодильник газа.

    9. Абсорбционная башня.

    10. Холодильник кислоты.

    11. Сборник кислоты.

    12. Центробежный насос.

    13. Печь кипящего слоя.

    14. Топка.

    Основной фазой процесса производства серной кислоты является окисление двуокиси серы в контактном аппарате.

    Описание конструкции основных узлов контактного аппарата /11/.

    Рисунок 1 - Схема контактного отделения с двойным контактированием

    На рисунке 1 представлена схема контактного отделения с двойным контактированием. Газ проходит теплообменники 1 и 2 и поступает на первый, а затем на второй и третий слой контактной массы аппарата 3. После третьего слоя газ подается в промежуточный абсорбер 8, из него – в теплообменники 5 и 4, а затем – в четвертый слой контактной массы. Охлажденный в теплообменнике 5 газ проходит абсорбер 6 и из него выводится в атмосферу. На рисунке 2 представлен современный контактный аппарат в пересчете на H 2 SO 4 в зависимости от их размеров составляет от 50 до 1000 т/сут H 2 SO 4 . В аппарат загружают 200-300 л контактнй массы на 1т суточной выработки. Трубочные контактные аппараты применяются для окисления SO 2 реже, чем полочные.

    Рисунок 2 - Схема контактного аппарат с выносным теплообменником

    Для окисления двуокиси серы повышенной концентрации рационально применять контактные аппараты с кипящими слоями катализатора. Для уменьшения содержания SO 2 в отходящих газах широко применяется способ двойного контактирвания, сущность которого состоит в том, что окисление SO 2 на катализаторе осуществляется в два этапа. На первом этапе степень превращения составляет около 0,90. Перед вторым этапом контактирования из газа выделяют трех-окись серы; в результате в оставшейся газовой смеси увеличивается соотношение O 2 :SO 2 , а это повышает равновесную степень превращения (х р ). В результате в одном или двух слоях контактной массы второго этапа контактирования достигают степени превращения оставшейся двуокиси серы 0,995-0,997, а содержание SO 2 в отходящих газах снижается до 0,003%. При двойном контактировании газа нагревается от 50 до 420-440 о С два раза - перед первой и перед второй стадией контактирования, поэтому начинается концентрация двуокиси серы должна быть выше, чем при однократном контактировании в соответствии с уровнем адиабаты.

    1.4 Параметры нормального технологического режима

    В технологическом процессе производства серной кислоты имеются величины, характеризующие этот процесс, так называемые параметры процесса.

    Совокупность значений всех параметров процесса называют /12/ технологическим режимом, а совокупность значений параметров, обеспечивающих решение целевой задачи – нормальным технологическим режимом.

    Определены основные технологические параметры, подлежащие контролю с обоснованием их влияния на качество выпускаемого продукта и безопасность ведения процесса.

    Контролю подлежат /2/ следующие параметры:

    1. Температура обжигово газа, подаваемого в первую промывную башню. При отклонении температуры от заданного диапазона: в меньшую сторону - реакция концентрации SO 2
    2. Температура в 1, 2, 3, 4, 5 сборнике кислоты. При отклонении температуры от заданного диапазона: в меньшую сторону – концентрация SO 2 будет замедляться, отклонении в большую сторону – приведет к неоправданному расходу теплоты.
    3. Температура обжигово газа при выходе из трубчатого теплообменника. При отклонении температуры от заданного диапазона: в меньшую сторону – концентрация SO 2 до SO 3 будет замедляться, отклонении в большую сторону – приведет к неоправданному расходу теплоты.
    4. Температура SO 3 в холодильнике. После выхода из контактного аппарата SO 3 должен охладится для продолжения реакции в абсорбционной башне.
    5. Давление газа, подаваемого в печь КС. Контроль давления природного газа необходим для правильного и эффективного ведения процесса горения. Колебания давления в газовой сети могут сделать процесс горения неустойчивым и привести к неполному сгоранию топлива, и как следствие произойдет неоправданный перерасход газового топлива. Полное сжигание газа важно не только для достижения высокого КПД печи, но и для получения безвредной смеси отходящих газов, не влияющих на здоровье людей.
    6. Давление воздуха, подаваемого в турбокомпрессор. Контроль давления воздуха необходим для правильного и эффективной работы компрессора. Отклонение давления воздуха от заданного диапазона приведет к малой эффективности его работы.
    7. Давление воздуха, подаваемого в холодильник. Контроль давления воздуха необходим для максимальной производительности холодильника.
    8. Расход воздуха, подаваемого в топку. Контроль расхода воздуха необходим для правильного и эффективного ведения процесса горения. При малых избытках воздуха в топочном пространстве будет происходить неполное сгорание топлива, и как следствие произойдет неоправданный перерасход газового топлива. Полное сжигание газа важно не только для достижения высокого КПД печи, но и для получения безвредной смеси отходящих газов, не влияющих на здоровье людей.
    9. Расход обжигово газа выходящего из печи КС. Количество обжигово газа должно быть постоянным так как отклонение от нормы может навредить производству в целом.
    10. Расход колчедана в топочную печь. При недостатке продукта - приведет к неоправданному расходу теплоты
    11. Уровень на 1, 2, 3, 4, 5 сборнике кислоты нужен для получения необходимого количества кислоты и дальнейшей ее концентрации. При недостатке или избытке кислоты не будет достигнута нужная концентрация.
    12. Концентрация на первой промывной башне. Кислота поступающая на орошение первой промывной башни должна быть нужной концентрации (75% серная кислота) в противном случаи реакция в целом будет проходить не правильно.
    13. Концентрация на второй промывной башне. Кислота поступающая на орошение второй промывной башни должна быть нужной концентрации (30% серная кислота) в противном случаи реакция в целом будет проходить не правильно.
    14. Концентрация в сушильной башне. Кислота поступающая на орошение сушильной башни должна быть нужной концентрации (98% серная кислота) в противном случаи реакция в целом будет проходить не правильно.

    Таблица 1 - Технологические параметры, подлежащие контролю

    серная кислота производство

    2. Выбор и основание параметров контроля и управления

    2.1 Выбор и основных параметров и средств контроля

    2.1.1 Контроль температуры

    Необходимо производить контроль температуры в промывной башне. В контактном аппарате необходимо контролировать температуру в 450ºС, так как /2/ только лишь при данной температуре происходит выгорание серы из колчедана. Так же при повышении данной температуры возможен выход из строя аппаратуры и приборов

    2.1.2 Контроль расхода

    Контроль топочного газа необходим так как его количество влияет на сгорание серы в печи КС. Для того чтобы процесс протекал правильно мы ставим датчик контроля расхода в трубопровод перед входом обжигового газа в печь КС так как именно он контролирует степень выгорания серы в печи.

    2.1.3 Контроль концентрации

    Необходим постоянный контроль концентрации серы в сборнике кислоты.

    Необходимый уровень концентрации серы равен 30% от общей массы смеси.

    Понижение или увеличение данного параметра приведёт к браку продукции уже на начальном её этапе производства.

    Так же необходим контроль концентрации серной кислоты в промывной башне с насадкой равной, 75%, а так же концентрация сушильной башне, равной 92%.

    2.1.4 Контроль уровня

    Контроль уровня необходим в контейнере для сбора кислоты, если кислоты будет много она может вытечь наружу и тем самым навредить оборудованию и людям находящимся неподалеку.

    2.2 Выбор и обоснование параметров управления и каналов воздействия

    2.2.1 Управление температурой в ПКЦ

    Необходимо регулировать температуру в ПКС, которая должна быть равна 450ºС. Повышение данной температуры ведёт к неполному выгоранию серной кислоты, а из-за недостаточно низкой температуры происходит брак продукции. Регулирование температуры на данном участке технологического процесса осуществляется посредством управления подачи топочного газа в ПКС – с помощью исполнительного механизма.

    2.2.2 Управление концентрации в промывной башне

    Необходим постоянный контроль концентрации серы в сборнике кислоты, которая должна быть равна 92%. Понижение или увеличение данного параметра приведёт к неправильному протекание реакции, что нарушит весь технологический процесс. Регулирование концентрации на данном участке технологического процесса осуществляется посредством управления подачи воды в сборник кислоты – с помощью исполнительного механизма.

    2.2.3 Управление давлением в ПКС

    Необходим постоянный контроль давления в ПКС, которое должно быть равным 250 кПа. Понижение или увеличение данного параметра приведёт к браку продукции уже на начальном её этапе производства. Регулирование давления на данном участке технологического процесса осуществляется посредством управления подачи атмосферного воздуха – с помощью исполнительного механизма.

    2.2.4 Управление уровня в сборнике кислоты

    Необходимо постоянно контролировать уровень в сборнике кислоты который не должен превышать 75 см. Понижение или увеличение этого параметра может не вредит технологическому процессу.

    3. Описание АСР и технических средств автоматизации, выбор и обоснование законов регулирования

    3.1 АСР температуры обжигового газа после – ПКС

    Основными параметрами влияющими на процесс в ПКС являются: Fк- расход колчедана, Т- теплопотери, Тп- температура греющего пара, Тк- температура колчедана, Тв- температура воздуха, Рп- давление греющего пара.

    Рисунок 1 - Структурная схема печи кипящего слоя как объекта управления

    Температура обжигового газа на выходе из ПКС является основным контролируемым параметром. Для достижения необходимой температуры, в соответствии с нормальным технологическим режимом, регулируется расход топочного газа, используется при этом регулирование по отклонению, как самый эффективный способ в данном случае.

    Рисунок 2 - Принципиальная схема регулирования температуры обжигово газа

    Рисунок 3 - Структурная схема регулирования температуры обжигово газа

    3.2 АСР концентрации в промывной башне

    Основными параметрами влияющими на процесс в промывной башне:

    Fоб.г- расход обжигового газа, Fк- расход кислоты, Qк- концентрация кислоты, Fв- расход воды, Q- концентрация примесей, Q SO2- концентрация SO2

    Рисунок 4 - Структурная схема промывной башни

    Концентрация серной кислоты подаваемая на орошение промывной башни является основным контролируемым параметром. Для достижения необходимой концентрации, в соответствии с нормальным технологическим режимом, регулируется подача воды в сборник кислоты.

    Рисунок 5 - Принципиальная схема регулирования концентрации серной кислоты

    Рисунок 6 - Структурная схема регулирования концентрации серной кислоты

    3.3 АСР давления в ПКС

    Основными параметрами влияющими на процесс в ПКС, являются:

    Fк- расход колчедана, Т- температура в ПКЦ, Fв- температура воздуха, Fк- температура колчедана.

    Рисунок 7 - Структурная схема ПКЦ

    Расход воздуха подаваемого в ПКС является основным контролируемым параметром. Для достижения необходимого давления, в соответствии с нормальным технологическим режимом, регулируется расход воздуха, используется при этом регулирование по отклонению, как самый эффективный способ в данном случае.

    Рисунок 8 - Принципиальная схема регулирования давления

    Рисунок 9 - Структурная схема регулирования давления в ПКЦ

    3.4 АСР уровня в сборнике кислоты

    Основными параметрами влияющими на процесс в сборнике кислоты являются: Fк- расход колчедана, Т- температура в ПКЦ, Fв- температура воздуха, Fк- температура колчедана.

    Рисунок 10 - Структурная схема сборника уровня

    Расход воды подаваемой в сборник кислоты является основным контролируемым параметром. Для достижения необходимого уровня, в соответствии с нормальным технологическим режимом, регулируется расход воды, используется при этом регулирование по отклонению, как самый эффективный способ в данном случае.

    Рисунок 11 - Принципиальная схема регулирования уровня

    Рисунок 12 - Структурная схема регулирования уровня